Is Lithium-ion the Ideal Battery?

11 Aug.,2025

 

Is Lithium-ion the Ideal Battery?

For many years, nickel-cadmium had been the only suitable battery for portable equipment from wireless communications to mobile computing. Nickel-metal-hydride and lithium-ion emerged In the early s, fighting nose-to-nose to gain customer's acceptance. Today, lithium-ion is the fastest growing and most promising battery chemistry.

Please visit our website for more information on this topic.

The lithium-ion battery

Pioneer work with the lithium battery began in under G.N. Lewis but it was not until the early s when the first non-rechargeable lithium batteries became commercially available. lithium is the lightest of all metals, has the greatest electrochemical potential and provides the largest energy density for weight.

Attempts to develop rechargeable lithium batteries failed due to safety problems. Because of the inherent instability of lithium metal, especially during charging, research shifted to a non-metallic lithium battery using lithium ions. Although slightly lower in energy density than lithium metal, lithium-ion is safe, provided certain precautions are met when charging and discharging. In , the Sony Corporation commercialized the first lithium-ion battery. Other manufacturers followed suit.

The energy density of lithium-ion is typically twice that of the standard nickel-cadmium. There is potential for higher energy densities. The load characteristics are reasonably good and behave similarly to nickel-cadmium in terms of discharge. The high cell voltage of 3.6 volts allows battery pack designs with only one cell. Most of today's mobile phones run on a single cell. A nickel-based pack would require three 1.2-volt cells connected in series.

Lithium-ion is a low maintenance battery, an advantage that most other chemistries cannot claim. There is no memory and no scheduled cycling is required to prolong the battery's life. In addition, the self-discharge is less than half compared to nickel-cadmium, making lithium-ion well suited for modern fuel gauge applications. lithium-ion cells cause little harm when disposed.

Despite its overall advantages, lithium-ion has its drawbacks. It is fragile and requires a protection circuit to maintain safe operation. Built into each pack, the protection circuit limits the peak voltage of each cell during charge and prevents the cell voltage from dropping too low on discharge. In addition, the cell temperature is monitored to prevent temperature extremes. The maximum charge and discharge current on most packs are is limited to between 1C and 2C. With these precautions in place, the possibility of metallic lithium plating occurring due to overcharge is virtually eliminated.

Aging is a concern with most lithium-ion batteries and many manufacturers remain silent about this issue. Some capacity deterioration is noticeable after one year, whether the battery is in use or not. The battery frequently fails after two or three years. It should be noted that other chemistries also have age-related degenerative effects. This is especially true for nickel-metal-hydride if exposed to high ambient temperatures. At the same time, lithium-ion packs are known to have served for five years in some applications.

Manufacturers are constantly improving lithium-ion. New and enhanced chemical combinations are introduced every six months or so. With such rapid progress, it is difficult to assess how well the revised battery will age.

Storage in a cool place slows the aging process of lithium-ion (and other chemistries). Manufacturers recommend storage temperatures of 15°C (59°F). In addition, the battery should be partially charged during storage. The manufacturer recommends a 40% charge.

The most economical lithium-ion battery in terms of cost-to-energy ratio is the cylindrical (size is 18mm x 65.2mm). This cell is used for mobile computing and other applications that do not demand ultra-thin geometry. If a slim pack is required, the prismatic lithium-ion cell is the best choice. These cells come at a higher cost in terms of stored energy.

Advantages

  • High energy density - potential for yet higher capacities.
  • Does not need prolonged priming when new. One regular charge is all that's needed.
  • Relatively low self-discharge - self-discharge is less than half that of nickel-based batteries.
  • Low Maintenance - no periodic discharge is needed; there is no memory.
  • Specialty cells can provide very high current to applications such as power tools.

Limitations

  • Requires protection circuit to maintain voltage and current within safe limits.
  • Subject to aging, even if not in use - storage in a cool place at 40% charge reduces the aging effect.
  • Transportation restrictions - shipment of larger quantities may be subject to regulatory control. This restriction does not apply to personal carry-on batteries.
  • Expensive to manufacture - about 40 percent higher in cost than nickel-cadmium.
  • Not fully mature - metals and chemicals are changing on a continuing basis.

The lithium polymer battery

The lithium-polymer differentiates itself from conventional battery systems in the type of electrolyte used. The original design, dating back to the s, uses a dry solid polymer electrolyte. This electrolyte resembles a plastic-like film that does not conduct electricity but allows ions exchange (electrically charged atoms or groups of atoms). The polymer electrolyte replaces the traditional porous separator, which is soaked with electrolyte.

The dry polymer design offers simplifications with respect to fabrication, ruggedness, safety and thin-profile geometry. With a cell thickness measuring as little as one millimeter (0.039 inches), equipment designers are left to their own imagination in terms of form, shape and size.

Unfortunately, the dry lithium-polymer suffers from poor conductivity. The internal resistance is too high and cannot deliver the current bursts needed to power modern communication devices and spin up the hard drives of mobile computing equipment. Heating the cell to 60°C (140°F) and higher increases the conductivity, a requirement that is unsuitable for portable applications.

To compromise, some gelled electrolyte has been added. The commercial cells use a separator/ electrolyte membrane prepared from the same traditional porous polyethylene or polypropylene separator filled with a polymer, which gels upon filling with the liquid electrolyte. Thus the commercial lithium-ion polymer cells are very similar in chemistry and materials to their liquid electrolyte counter parts.

Lithium-ion-polymer has not caught on as quickly as some analysts had expected. Its superiority to other systems and low manufacturing costs has not been realized. No improvements in capacity gains are achieved - in fact, the capacity is slightly less than that of the standard lithium-ion battery. Lithium-ion-polymer finds its market niche in wafer-thin geometries, such as batteries for credit cards and other such applications.

Advantages

  • Very low profile - batteries resembling the profile of a credit card are feasible.
  • Flexible form factor - manufacturers are not bound by standard cell formats. With high volume, any reasonable size can be produced economically.
  • Lightweight - gelled electrolytes enable simplified packaging by eliminating the metal shell.
  • Improved safety - more resistant to overcharge; less chance for electrolyte leakage.

Limitations

  • Lower energy density and decreased cycle count compared to lithium-ion.
  • Expensive to manufacture.
  • No standard sizes. Most cells are produced for high volume consumer markets.
  • Higher cost-to-energy ratio than lithium-ion

Restrictions on lithium content for air travel

Air travelers ask the question, "How much lithium in a battery am I allowed to bring on board?" We differentiate between two battery types: Lithium metal and lithium-ion.
Most lithium metal batteries are non-rechargeable and are used in film cameras. Lithium-ion packs are rechargeable and power laptops, cellular phones and camcorders. Both battery types, including spare packs, are allowed as carry-on but cannot exceed the following lithium content:

  • 2 grams for lithium metal or lithium alloy batteries
  • 8 grams for lithium-ion batteries

Lithium-ion batteries exceeding 8 grams but no more than 25 grams may be carried in carry-on baggage if individually protected to prevent short circuits and are limited to two spare batteries per person.

How do I know the lithium content of a lithium-ion battery? From a theoretical perspective, there is no metallic lithium in a typical lithium-ion battery. There is, however, equivalent lithium content that must be considered. For a lithium-ion cell, this is calculated at 0.3 times the rated capacity (in ampere-hours).

Example: A 2Ah Li-ion cell has 0.6 grams of lithium content. On a typical 60 Wh laptop battery with 8 cells (4 in series and 2 in parallel), this adds up to 4.8g. To stay under the 8-gram UN limit, the largest battery you can bring is 96 Wh. This pack could include 2.2Ah cells in a 12 cells arrangement (4s3p). If the 2.4Ah cell were used instead, the pack would need to be limited to 9 cells (3s3p).

Restrictions on shipment of lithium-ion batteries

Lithium metal battery - Wikipedia

Non-rechargeable battery using lithium metal as anode This article is about disposable lithium batteries. For the common rechargeable batteries, see Lithium-ion battery. For rechargeable lithium-metal batteries, see Rechargeable lithium metal battery.

Lithium metal batteries are nonrechargeable primary batteries that have metallic lithium as an anode. The name refers to the metal as to distinguish them from rechargeable lithium-ion batteries, which use lithiated metal oxides as the cathode material.[1] Although most lithium metal batteries are non-rechargeable, rechargeable lithium metal batteries are also under development. Since , Dangerous Goods Regulations differentiate between lithium metal batteries (UN ) and lithium-ion batteries (UN ).[2]

They stand apart from other batteries in their high charge density and high cost per unit. Depending on the design and chemical compounds used, lithium cells can produce voltages from 1.5 V (comparable to a zinc–carbon or alkaline battery) to about 3.7 V.

Disposable primary lithium batteries must be distinguished from secondary lithium-ion or a lithium-polymer,[3] which are rechargeable batteries and contain no metallic lithium. Lithium is especially useful, because its ions can be arranged to move between the anode and the cathode, using an intercalated lithium compound as the cathode material but without using lithium metal as the anode material. Pure lithium will instantly react with water, or even moisture in the air; the lithium in lithium-ion batteries is a less reactive compound.

Lithium batteries are widely used in portable consumer electronic devices. The term "lithium battery" refers to a family of different lithium-metal chemistries, comprising many types of cathodes and electrolytes but all with metallic lithium as the anode. The battery requires from 0.15 to 0.3 kg (5 to 10 oz) of lithium per kWh. As designed these primary systems use a charged cathode, that being an electro-active material with crystallographic vacancies that are filled gradually during discharge.

The most common type of lithium cell used in consumer applications uses metallic lithium as the anode and manganese dioxide as the cathode, with a salt of lithium dissolved in an organic solvent as the electrolyte.[4]

History

[edit]

Chemistries

[edit] Chemistry Cathode Electrolyte Nominal
voltage Open-circuit
voltage Wh/kg Wh/L Li–MnO2
(IEC code: C),
"CR" Heat-treated manganese dioxide Lithium perchlorate in an organic solvent (propylene carbonate and dimethoxyethane in many common cells[14][15][16]) 3 V 3.3 V 280 580 "Li–Mn". The most common consumer-grade lithium battery, about 80% of the lithium battery market. Uses inexpensive materials. Suitable for low-drain, long-life, low-cost applications. High energy density per both mass and volume. Operational temperature ranges from -30 °C to 60 °C. Can deliver high pulse currents.[17] With discharge, the internal impedance rises and the terminal voltage decreases. High self-discharge at high temperatures. 1,2-Dimethoxyethane is a REACH candidate substance of very high concern. Li–(CF)x
(IEC code: B),
"BR" Carbon monofluoride Lithium tetrafluoroborate in propylene carbonate, dimethoxyethane, or gamma-butyrolactone 3 V 3.1 V 360–500 1,000 Cathode material formed by high-temperature intercalation of fluorine gas into graphite powder. Compared to manganese dioxide (CR), which has the same nominal voltage, it provides more reliability.[17] Used for low to moderate current applications in memory and clock backup batteries. Used in aerospace applications, qualified for space since , military applications both terrestrial and marine, in missiles, and in artificial cardiac pacemakers.[18] Operates up to around 80 °C. Very low self-discharge (<0.5%/year at 60 °C, <1%/yr at 85 °C). Developed in the s by Matsushita.[19] Li–FeS2
(IEC code: F),
"FR" Iron disulfide Propylene carbonate, dioxolane, dimethoxyethane 1.4–1.6 V 1.8 V 297[20] "Lithium-iron", "Li/Fe". Called "voltage-compatible" lithium, it can work as a replacement for alkaline batteries with its 1.5  V nominal voltage. As such, Energizer lithium cells of AA[21] and AAA size employ this chemistry. 2.5 times higher lifetime for high current discharge regime than alkaline batteries, better storage life due to lower self-discharge(10–20 years). FeS2 is cheap. Cathode is often designed as a paste of iron sulfide powder mixed with powdered graphite. Variant is Li–CuFeS2. Li–SOCl2
(IEC code: E) Thionyl chloride Lithium tetrachloroaluminate in thionyl chloride 3.5 V 3.65 V 500–700 1,200 Liquid cathode. For low-temperature applications. Can operate down to −55 °C, where it retains over 50% of its rated capacity. A negligible amount of gas generated in nominal use, a limited amount under abuse. Has relatively high internal impedance and limited short-circuit current. High energy density, about 500 Wh/kg. Toxic. Electrolyte reacts with water. Low-current cells are used for portable electronics and memory backup. High-current cells are used in military applications. In long storage, forms passivation layer on the anode, which may lead to temporary voltage delay when put into service. High cost and safety concerns limit use in civilian applications. Can explode when shorted. Underwriters Laboratories require a trained technician for the replacement of these batteries. Hazardous waste, Class 9 Hazmat shipment.[22] Not used for consumer or general-purpose batteries. Li–SOCl2,BrCl, Li–BCX
(IEC code: E) Thionyl chloride with bromine chloride Lithium tetrachloroaluminate in thionyl chloride 3.7–3.8  V 3.9 V 350 770 Liquid cathode. A variant of the thionyl chloride battery, with 300  mV higher voltage. The higher voltage drops back to 3.5  V soon as the bromine chloride gets consumed during the first 10–20% of the discharge. The cells with added bromine chloride are thought to be safer when abused. Li–SO2Cl2
(IEC code: Y) Sulfuryl chloride Lithium tetrachloroaluminate in sulfuryl chloride 3.7 V 3.95 V 330 720 Liquid cathode. Similar to thionyl chloride. Discharge does not result in a build-up of elemental sulfur, which is thought to be involved in some hazardous reactions, therefore sulfuryl chloride batteries may be safer. Commercial deployment is hindered by the tendency of the electrolyte to corrode the lithium anodes, reducing the shelf life. Chlorine is added to some cells to make them more resistant to abuse. Sulfuryl chloride cells give less maximum current than thionyl chloride ones, due to polarization of the carbon cathode. Sulfuryl chloride reacts violently with water, releasing hydrogen chloride and sulfuric acid.[23] Li–SO2
(IEC code: W) Sulfur dioxide on teflon-bonded carbon Lithium bromide in sulfur dioxide with small amount of acetonitrile 2.85 V 3.0 V 250 400 Liquid cathode. Can operate down to −55 °C and up to +70 °C. Contains liquid SO2 at high pressure. Requires safety vent, can explode in some conditions. High energy density. High cost. At low temperatures and high currents, performs better than Li–MnO2. Toxic. Acetonitrile forms lithium cyanide, and can form hydrogen cyanide in high temperatures.[24] Used in military applications.

Addition of bromine monochloride can boost the voltage to 3.9 V and increase energy density.[25]

Link to CHANGINGTECH

Li–I2 Iodine that has been mixed and heated with poly-2-vinylpyridine (P2VP) to form a solid organic charge transfer complex. A solid monomolecular layer of crystalline Lithium iodide that conducts lithium ions from the anode to the cathode but does not conduct Iodine.[26] 2.8 V 3.1 V Solid electrolyte. Very high reliability and low self-discharge rate. Used in medical applications that need a long life, e.g. pacemakers. Does not generate gas even under a short circuit. Solid-state chemistry, limited short-circuit current, suitable only for low-current applications. Terminal voltage decreases with the degree of discharge due to precipitation of lithium iodide. Li–Ag2CrO4 Silver chromate Lithium perchlorate solution 3.1/2.6 V 3.45 V Very high reliability. Has a 2.6  V plateau after reaching a certain percentage of discharge provides early warning of impending discharge. Developed specifically for medical applications, for example, implanted pacemakers. Li–Ag2V4O11,
Li–SVO,
Li–CSVO Silver oxide+vanadium pentoxide (SVO) lithium hexafluorophosphate or lithium hexafluoroarsenate in propylene carbonate with dimethoxyethane Used in medical applications, like implantable defibrillators, neurostimulators, and drug infusion systems. Also projected for use in other electronics, such as emergency locator transmitters. High energy density. Long shelf life. Capable of continuous operation at a nominal temperature of 37 °C.[27] Two-stage discharge with a plateau. Output voltage decreases proportionally to the degree of discharge. Resistant to abuse. Li–CuO
(IEC code: G),
"GR" Copper(II) oxide Lithium perchlorate dissolved in dioxolane 1.5 V 2.4 V Can operate up to 150 °C. Developed as a replacement of zinc–carbon and alkaline batteries. "Voltage up" problem, the high difference between open-circuit and nominal voltage. Produced until the mid-s, replaced by lithium–iron sulfide. Current use is limited. Li–Cu4O(PO4)2 Copper oxyphosphate See Li–CuO Li–CuS Copper sulfide Lithium salt or a salt such as a tetraalkylammonium chloride dissolved in LiClO4 in an organic solvent that is a mixture of 1,2-dimethoxy ethane, 1,3-dioxolane and 2,5-dimethyloxazole as a stabilizer[28] 1.5 V Li–PbCuS Lead sulfide and copper sulfide 1.5 V 2.2 V Li–FeS Iron sulfide Propylene carbonate, dioxolane, dimethoxyethane 1.5–1.2 V "Lithium-iron", "Li/Fe". used as a replacement for alkaline batteries. See lithium-iron disulfide. Li–Bi2Pb2O5 Lead bismuthate 1.5 V 1.8 V Replacement of silver-oxide batteries, with higher energy density, lower tendency to leak, and better performance at higher temperatures. Li–Bi2O3 Bismuth trioxide 1.5 V 2.04 V Li–V2O5 Vanadium pentoxide 3.3/2.4 V 3.4 V 120/260 300/660 Two discharge plateaus. Low-pressure. Rechargeable. Used in reserve batteries. Li–CuCl2 Copper chloride LiAlCl4 or LiGaCl4 in SO2, a liquid, inorganic, non-aqueous electrolyte. Rechargeable. This cell has three voltage plateaus as it discharges (3.3  V, 2.9  V, and 2.5  V).[29] Discharging below the first plateau reduces the life of the cell.[29] The complex salt dissolved in SO2 has a lower vapor pressure at room temperature than pure sulfur dioxide,[30] making the construction simpler and safer than Li–SO2 batteries. Li/Al–MnO2, "ML" Manganese dioxide 3 V[31] Rechargeable. Anode is a Lithium-Aluminum alloy.[31][32] Mainly marketed by Maxell. Li/Al–V2O5, "VL" Vanadium pentoxide 3 V[33] Rechargeable. Anode is a Li–Al alloy.[34] Li–Se Selenium non-aqueous carbonate electrolytes 1.9 V[35] Li–air Porous carbon Organic, aqueous, glass–ceramic (polymer–ceramic composites) 1,800–660[36] 1,600–600[36] Rechargeable. As of , no commercial implementation is available due to difficulties in achieving multiple discharge cycles without losing capacity.[36] There are multiple possible implementations, each having different energy capacities, advantages and disadvantages. In November , a team of University of Cambridge researchers furthered work on lithium-air batteries by developing a charging process capable of prolonging the battery life and battery efficiency. Their work resulted in a battery that delivered high energy densities, more than 90% efficiency, and could be recharged for up to 2,000 times. The lithium-air batteries are described as the "ultimate" batteries because they propose a high theoretical energy density of up to ten times the energy offered by regular lithium-ion batteries. They were first developed in a research environment by Abraham & Jiang in .[37] Toyota promoted a vehicle with a working solid-state battery in September ; due to cost, the company plans to use it in a hybrid vehicle in , before scaling up to fully electric vehicles.[38] Other companies working on commercialization include QuantumScape and Solid Power (funded by Ford Motor Company and BMW).[38] Li–FePO4 Lithium iron phosphate ethylene carbonate–dimethyl carbonate (EC–DMC) 1–1 lithium perchlorate (LiClO
4
) 1M 3.0 ~ 3.2 V 3.2 V 90–160[39][40] 325 Wh/L
(1,200 kJ/L)[40] The specific capacity of LiFePO
4
is higher than that of the related lithium cobalt oxide (LiCoO
2
) chemistry, but its energy density is less due to its lower operating voltage. The main drawback of LiFePO
4
is its low electrical conductivity. Because of low cost, low toxicity, well-defined performance, long-term stability, etc. LiFePO
4
is finding a number of roles in vehicle use, utility scale stationary applications, and backup power.

University of California San Diego have developed an electrolyte chemistry that allows lithium batteries to run at temperatures as low as -60 °C. The electrolytes also enable electrochemical capacitors to run as low as -80 °C. Previous low-temperature limit is -40 °C. High performance at room temperature is still maintained. This may improve energy density and safety of lithium batteries and electrochemical capacitors.[41]

Applications

[edit]

Lithium batteries find application in many long-life, critical devices, such as pacemakers and other implantable electronic medical devices. These devices use specialized lithium-iodide batteries designed to last 15 or more years. But for other, less critical applications such as in toys, the lithium battery may actually outlast the device. In such cases, an expensive lithium battery may not be cost-effective.

Lithium batteries can be used in place of ordinary alkaline cells in many devices, such as clocks and cameras. Although they are more costly, lithium cells will provide much longer life, thereby minimizing battery replacement. However, attention must be given to the higher voltage developed by the lithium cells before using them as a drop-in replacement in devices that normally use ordinary zinc cells.

Lithium batteries also prove valuable in oceanographic applications. While lithium battery packs are considerably more expensive than standard oceanographic packs, they hold up to three times the capacity of alkaline packs. The high cost of servicing remote oceanographic instrumentation (usually by ships) often justifies this higher cost.

Sizes and formats

[edit]

Small lithium batteries are very commonly used in small, portable electronic devices, such as PDAs, watches, camcorders, digital cameras, thermometers, calculators, personal computer BIOS (firmware),[42] communication equipment and remote car locks. They are available in many shapes and sizes, with a common variety being the 3-volt "coin" type manganese variety. The common CR battery is 20 mm diameter and 3.2 mm thick, where the first two digits is the diameter and the last two digits are thickness. A CR is the same 20 mm diameter but 2.5 mm thick.

The heavy electrical demands of many of these devices make lithium batteries a particularly attractive option. In particular, lithium batteries can easily support the brief, heavy current demands of devices such as digital cameras, and they maintain a higher voltage for a longer period than alkaline cells.

Popularity

[edit]

Lithium primary batteries account for 28% of all primary battery sales in Japan but only 1% of all battery sales in Switzerland. In the EU only 0.5% of all battery sales including secondary types are lithium primaries.[43][44][45][46][dubious – discuss]

Safety issues and regulation

[edit]

The computer industry's drive to increase battery capacity can test the limits of sensitive components such as the membrane separator, a polyethylene or polypropylene film that is only 20–25 μm thick. The energy density of lithium batteries has more than doubled since they were introduced in . When the battery is made to contain more material, the separator can undergo stress.

Rapid-discharge problems

[edit]

Lithium batteries can provide extremely high currents and can discharge very rapidly when short-circuited. Although this is useful in applications where high currents are required, a too-rapid discharge of a lithium battery – especially if cobalt is present in the cells' design – can result in overheating of the battery (that lowers the electrical resistance of any cobalt content within the cell), rupture, and even an explosion. Lithium-thionyl chloride batteries are particularly susceptible to this type of discharge. Consumer batteries usually incorporate overcurrent or thermal protection or vents to prevent an explosion.

Air travel

[edit]

From January 1, , much stricter regulations were introduced by IATA regarding the carriage of lithium batteries by air. They were adopted by the International Postal Union; however, some countries, e.g. the UK, have decided that they will not accept lithium batteries unless they are included with the equipment they power.

Because of the above risks, shipping and carriage of lithium batteries are restricted in some situations, particularly the transport of lithium batteries by air.

The United States Transportation Security Administration announced restrictions effective January 1, , on lithium batteries in checked and carry-on luggage. The rules forbid lithium batteries not installed in a device from checked luggage and restrict them in carry-on luggage by total lithium content.[47]

Australia Post prohibited transport of lithium batteries in air mail during .[48]

UK regulations for the transport of lithium batteries were amended by the National Chemical Emergency Centre in .[49]

In late , at least some postal administrations restricted airmail shipping (including Express Mail Service) of lithium batteries, lithium-ion batteries and products containing these (such as laptops and cell phones). Among these countries are Hong Kong, United States, and Japan.[50][51][52]

Methamphetamine labs

[edit]

Unused lithium batteries provide a convenient source of lithium metal for use as a reducing agent in methamphetamine labs. Specifically, lithium metal reduces pseudoephedrine and ephedrine to methamphetamine in the Birch reduction method, which employs solutions of alkali metals dissolved in anhydrous ammonia.[53][54]

Some jurisdictions have passed laws to restrict lithium battery sales or asked businesses to make voluntary restrictions in an attempt to help curb the creation of illegal meth labs. In Wal-Mart stores were reported to limit the sale of disposable lithium batteries to three packages in Missouri and four packages in other states.[55]

Health issues on ingestion

[edit]

Button cell batteries are attractive to small children and are often ingested. In the past 20 years, although there has not been an increase in the total number of button cell batteries ingested in a year, researchers have noted a 6.7-fold increase in the risk that an ingestion would result in a moderate or major complication and 12.5-fold increase in fatalities comparing the last decade to the previous one.[56][57]

The primary mechanism of injury with button battery ingestions is the generation of hydroxide ions, which cause severe chemical burns, at the anode.[59] This is an electrochemical effect of the intact battery, and does not require the casing to be breached or the contents released.[59] Complications include oesophageal strictures, tracheo-oesophageal fistulas, vocal cord paralysis, aorto-oesophageal fistulas, and death.[60] The majority of ingestions are not witnessed; presentations are non-specific; battery voltage has increased; the 20 to 25 mm button battery size are more likely to become lodged at the cricopharyngeal junction; and severe tissue damage can occur within 2 hours. The 3 V, 20 mm CR lithium battery has been implicated in many of the complications from button battery ingestions by children of less than 4 years of age.[61]

While the only cure for an esophageal impaction is endoscopic removal, a study out of Children's Hospital of Philadelphia by Rachel R. Anfang and colleagues found that early and frequent ingestion of honey or sucralfate suspension prior to the battery's removal can reduce the injury severity to a significant degree.[57] As a result, US-based National Capital Poison Center (Poison Control) recommends the use of honey or sucralfate after known or suspected ingestions to reduce the risk and severity of injury to esophagus, and consequently its nearby structures.[62]

Button batteries can also cause significant necrotic injury when stuck in the nose or ears.[63] Prevention efforts in the US by the National Button Battery Task force in cooperation with industry leaders have led to changes in packaging and battery compartment design in electronic devices to reduce a child's access to these batteries.[64] However, there still is a lack of awareness across the general population and medical community to its dangers. Central Manchester University Hospital Trust warns that "a lot of doctors are unaware that this can cause harm".[65]

Disposal

[edit]

Regulations for disposal and recycling of batteries vary widely; local governments may have additional requirements over those of national regulations. In the United States, one manufacturer of lithium iron disulfide primary batteries advises that consumer quantities of used cells may be discarded in municipal waste, as the battery does not contain any substances controlled by US Federal regulations.[66] Most lithium batteries, are, however, classified as hazardous waste due to the possibility of fire. Another manufacturer states that while "button" size lithium batteries contain perchlorate, which is regulated as a hazardous waste in California; regulated quantities would not be found in typical consumer use of these cells.[67]

The EPA, however, states that due to limited supply and increasingly high importance, lithium batteries should always be recycled if possible.[68] As well, a rupture in a battery poses a potential fire hazard, thus the EPA states that the average consumer should take lithium batteries to specialized lithium or hazardous materials facilities.

As lithium in used but non-working (i.e. extended storage) button cells is still likely to be in the cathode cup, it is possible to extract commercially useful quantities of the metal from such cells as well as the manganese dioxide and specialist plastics. Some also alloy the lithium with magnesium (Mg) to cut costs.[citation needed]

Since there has been an exponential increase in demand for lithium batteries over time,[69] there have been pushes to find better ways to recycle lithium batteries.[70]

Contact us to discuss your requirements of Lithium Primary Battery. Our experienced sales team can help you identify the options that best suit your needs.

Rechargeable batteries

[edit]

See also

[edit]

References

[edit]